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Abstract

The aim of this study is to classify human emotions using
Electroencephalographic (EEG) signals. The main contri-
bution of our approach is classifying four classes of emo-
tions using a simple distance metric Log-Euclidean Rie-
mannian Metric (LERM) on a symmetric positive definite
manifold (SPD). In this work, four classes of emotions were
recognized (HVHA, LVHA, LVLA, and HVLA) using four
different channel combinations (2-channels, 7-channels,
10-channels, and 18-channels) over four frequency bands
(theta, alpha, beta, and gamma). Our approach shows
comparable results to existing studies applied on the DEAP
dataset. The best emotion classification accuracy for HVHA
is 88.3%, LVHA is 84.38%, LVLA is 79.3%, and HVLA is
78.4%. The average recognition accuracy for valence is
74.6%± 3.9, and 72.6%± 6.7 for arousal.

1. Introduction

Emotions plays a vital role in human communication,

most human computer interaction (HCI) systems are still

not efficient in understanding emotions. Human emotion

state can be extracted either through voice [5], facial expres-

sions [8], Electroencephalography (EEG) signals, or com-

bining multiple modalities for a more accurate system [24].

In multimedia systems, emotion identification is very im-

portant in determining the effects of different multimedia

materials, and EEG based emotion identification is growing

attention in this area [21][22]. Various techniques for fea-

ture extraction from EEG signals have been used in the lit-

erature including, time domain techniques [20], frequency

domain techniques [18] [23][15][29], joint time-frequency

analysis techniques [19][9]. The use of symmetric positive

definite manifold for EEG based classification problems is

relatively new, but it is spreading quickly and is currently

applied in various applications including image processing,

radar data processing, medical imaging, computer vision,

machine learning, and brain-computer interaction [4] [6].

In this paper, four class emotion classification system

is developed based on using Log-Euclidean Riemannian

Metric (LERM) on a symmetric positive definite mani-

fold. Emotion classification from multi-channel EEG sig-

nals in DEAP dataset was studied using four different chan-

nel combinations and over four different frequency bands.

2. Related Work

Most emotion recognition techniques based on EEG sig-

nals, extract features either from time domain or frequency

domain or joint time and frequency domains. In time do-

main the variation of the EEG signal time series is studied

and from which features are extracted. Statistical features

(Energy, Power, Entropy, Mean, Standard deviation, etc.)

have been used extensively [19][20].

In frequency domain techniques, time domain EEG sig-

nal is transformed into frequency domain using Fast Fourier

Transform (FFT) or one of its alternatives (Shot-Time

Fourier Transform (STFT), Discrete Wavelet Transform

(DWT)). The most common frequency feature is Power

Spectral Density (PSD) generated from different sub-bands

(Delta 0-4 HZ, Theta 4-8 HZ, Alpha 8-16 HZ, Beta 16-32

HZ, and Gamma 32-64 HZ)[23]. Thammasan et al. [26] and

Zheng et al. [29] used frequency domain features (Fractal

dimension, Power spectral density) for emotion classifica-

tion.

Due to the non-stationary nature of the EEG signals, new

techniques combining time and frequency domain were in-

troduced to capture new features. In [9] Hadjidimitriou et

al. extracted Hilbert-Huang Spectrum (HHS) energy and

354

2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)

978-1-7281-4272-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MIPR49039.2020.00078

Authorized licensed use limited to: Middlesex University. Downloaded on August 31,2020 at 18:12:39 UTC from IEEE Xplore.  Restrictions apply. 



use it to study music liking for different individuals. Li et

al. [13] studied EEG signals in both time and frequency

domains using Hilbert-Huang transform (HHT). The use of

Riemannian geometry in EEG signal analysis and in brain-

computer interaction (BCI) is attracting more researchers

because of its robustness, accuracy, and simplicity. Cogedo

et al. [6] offered a complete review on the use for Rieman-

nian geometry for EEG-based brain computer interaction.

The rest of this paper is organized as follows; In section

3, we consider the EEG signal recorded from N electrodes

as covariance matrices and we study the Riemannian ge-

ometry of the SPD manifold and the the classification ap-

proach. Experimental results and discussions are reported

in section 4 . In section 5, we conclude and draw some

perspectives of the work. The full approach is illustrated in

Fig. 1.

3. Methodology

3.1. The SPD manifold

Consider the EEG signal recorded from N electrodes,

each electrode signal forms a single time series xi(t) where

i = 1, ...N,. Each time domain signal is divided into small

windows (in this work we used 4 sec. with 50% overlap),

this results in 28 windows. Convolution is performed be-

tween each window and the corresponding windows com-

ing from the N electrodes to generate 28 covariance matri-

ces Ci, i = 1, .., 28. We denote by X ∈ R
N×n a given EEG

recording epoch recorded from N electrodes and having n

samples per window. The covariance matrix C between N
random variables is a square matrix C ∈ R

N×N [6] given

by:

C =
1

N − 1
XXT (1)

3.2. Riemannian geometry of Symmetric positive-
definite matrices

A non-singular covariance matrix C of size N × N be-

longs to the set of symmetric positive-definite (SPD) ma-

trices. These do not form a vector space (the space is

not closed under matrix subtraction), rather they form a

connected Riemannian manifold Sym+
N [6]. As such, the

distance between SPD matrices is not accurately captured

by the Euclidean distance. Several distance measures on

Sym+
d have been proposed. The most widely used is the

Log-Euclidean Riemannian Metric (LERM) [6]. Given two

SPD matrices Ci and Cj , their LERM distance is computed

as:

δ2(Ci, Cj) = ‖log
(
C
−1
2

i CjC
−1
2

i

)
‖F (2)

where ‖ · ‖F is the Frobenius norm operator.

The geometric mean between SPD matrices can be gen-

erated using various techniques [7][3], three of those ap-

proaches are used in this study. The cheap mean (CM) [7]

is defined by;

(C1, C2, ......, Cm) = exp

(
1

m

m∑
i=1

log (Ci)

)
(3)

The Geometric mean between two matrices (GM1) [7][3] is

defined by;

Ci#Cj = C
1
2
i

(
C
−1
2

i CjC
−1
2

i

)−1
2

C
1
2
i (4)

and the Geometric mean between m matrices(GM2) [7][3]

is defined by;((((
C1# 1

2
C2

)
# 1

3
C3

)
# 1

4
C4

)
. . .# 1

M
CM

)
(5)

Where ;

Ci#tCj = C
1
2
i

(
C
−1
2

i CjC
−1
2

i

)t
C

1
2
i (6)

3.3. Emotion Model

In this study, we use a two dimensional emotion model

of valence and arousal for classifying four classes of emo-

tions (HVHA, LVHA, LVLA, and HVLA). valence shows

the degree of delight and varies from negative to positive.

Arousal shows the degree of emotion activation and varies

from excitement to calm. Figur 2 shows the valence-arousal

dimension model of human emotion.

3.4. Emotion Classification

Let
{(

C(1), l(1)
)
, . . . ,

(
C(n), l(n)

)}
be a training set of

labeled samples. Where for each 1 ≤ i ≤ n, C(i) is a

covariance matrice and l(i) is the corresponding emotion la-

bels, l(i) ∈ {e1, e2, e3, e4} in a certain frequency band, and

coming from N electrodes. Our goal is to find a function

that associates an element of Sym+
d its classification label

l(i) ∈ {e1, e2, e3, e4}. In Euclidean spaces, any standard

classifier (e.g. standard SVM) may be a natural and appro-

priate choice to classify Euclidean data. Unfortunately, this

is no more suitable as the space Sym+
d is non-linear. In this

paper following the idea of [1], we propose to compute the

mean Ĉ(l) of each emotion covariances class ei by using

one of the geometric described above during the training

phase. The classification is based on an minimum distance

by using the Log-Euclidean Riemannian Metric (LERM)

dLERM between unknown SPD matrix and the mean. To
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Figure 1: Emotion brain computer interaction cycle starting from capturing the EEG signals from multiple electrodes, divid-

ing it into small 4 sec. 50% overlapping windows, generating covariance matrices, labeling the signal to one of four emotion

states, generating the geometric mean for each trial covariance matrices.

Figure 2: valence-Arousal model of human emotion.

be more precise, given l classes and a training phase where

the mean is defined by Ĉ(l), a new observation Ci is as-

signed to the class l according to the classification rule

l̂ = arg min
l∈{e1,e2,e3,e4}

{
dLERM

(
Ci, Ĉ(l)

)}
(7)

4. Experimental Results

4.1. Dataset

DEAP dataset [11] consists of the multi-channel EEG

signals of 32 individuals (16 women and 16 men, with av-

erage age 26.9) recorded while watching 40 one-minute

videos. The EEG signals were recorded using 32 elec-

trodes and sampled at 512 HZ. The electrodes were ar-

ranged according to the international 10-20 positioning sys-

tem [16][10].

In this work, we are using the preprocessed version of

the dataset in which; The data was down sampled to 128

sample/sec., EOG artifacts were removed, the data was av-

eraged to the common reference and was filtered using a

base band frequency filter from 4.0 - 45.0 HZ.

4.2. Temporal windowing

In DEAP dataset the EEG acquisition time is 60 sec-

onds, which is longer than the recognition time of emo-

tion states. For accurately identifying the emotion state,

EEG signals are divided into short segments by window-

ing. In [25] Thammasan et al. tested the performance of

emotion recognition with window duration that varies from

1 to 8 seconds their result showed that the smaller the win-

dow size the higher the performance. In [17] Mohammadi

et al. stated that the emotion hold time is from 2 to 4 sec.

and found that 4 sec. windows yield better performance.

Through this work we used a window size of 4 seconds with

50% overlap.

4.3. Channel selection

In DEAP data set EEG signals are recorded from elec-

trodes placed according to the international 10-20 system

[16] shown in Figure (3). In our approach we study emo-

tion classification based on EEG signals recorded from 2

channels, 7 channels, 14 channels, and 18 channels. Those

channel configurations were selected based on the experi-

ence of other researchers [12][14]. The two channels are;

F3-F4. The 7 channels are; P3, P7, PO3, O1, PZ, C4, and

CP2. The 10 channels are; F3-F4, F7-F8, FC1-FC2,FC5-

FC6, and FP1-FP2. 18 channels are composed of the 10

channels plus AF3-AF4, C3-C4, T7-T8, and FZ-CZ.

4.4. Emotion Classification Labels

In DEAP dataset, there exist 32 subjects in each subject

file there exist two arrays, one for the 32 electrodes time

domain signals and one for the labels. Participants were

asked to label each trial by rating the levels ( giving a score
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Figure 3: The international 10-20 system. A = Ear lobe, C

= central, Pg = nasopharyngeal, P = parietal, F = frontal, Fp

= frontal polar, O = occipital. [16]

Table 1: Emotion Classification Labels.

Emotion Label Scores Number of Samples

HVHA V ≥ 5, A ≥ 5 458

LVHA V < 5, A ≥ 5 297

LVLA V < 5, A < 5 260

HVLA V ≥ 5, A < 5 265

Total 1280

between 1 and 9) of arousal, valence, liking and dominance

for each of the 40 one-minute long music videos.

According to the given scores of valence (V) and arousal

(A), we divided the two dimensional emotion plane into

four classes. Table (1) clarify the labels, the valence and

arousal scores used for labeling, and the number of samples

in the dataset that belongs to each label. Using score 5 as

a threshold is taken in this research in order to be able to

compare our performance with other researchers [17][28].

By using threshold, we treat the classification problem as

four class binary classification problem.

4.5. Results and Discussion

In this work we studied the emotion classification prob-

lem from different angles. Emotion recognition accuracy

for EEG signals recorded from different channel combina-

tions were studied for 2 channels, 7 channels, 10 channels,

and 18 channels. We study the classification accuracy of

the emotion states on the original EEG signals without fre-

quency separation, then on different frequency bands (theta

(4-8 HZ), alpha (8-16 HZ), beta (16-32 HZ), gamma (32-45

HZ)).

Classification between four different classes of emotions

HVHA, LVHA, LVLA, and HVLA were carried out. This

was done using three methods for computing the geomet-

ric mean cheap mean (CM), geometric mean between two

matrices (GM1), and geometric mean between m matrices

(GM2).

Due to the large set of results we obtained, we summa-

rized our results and the best accuracy achieved for the 4

classes classification problem is shown in table 2, along

with the frequency band and the geometric mean genera-

tion method. The best accuracy for HVHA emotion state

(excited, happy, pleased) was 88.3%, LVHA emotion state

(annoying, anger, nerves) was 84.38%, LVLA emotion state

(sad, board, sleepy) was 79.3%, and HVLA emotion state

(relaxed, peaceful, calm) was 78.4%.

We found that most existing studies on DEAP

dataset classify emotions into two classes valence (Posi-

tive/Negative), arousal ( Pleasant/Unpleasant). For compar-

ing our classification accuracy with these studies, the mean

and standard deviation accuracy for valence and arousal of

our approach is shown in table 3. A comparison between

the accuracy achieved using our approach and other stud-

ies is shown in table 4. The results achieved are compara-

ble to other more complex and time consuming approaches

[17][27][14][2][28].

5. Conclusion

In this paper we have classified four classes of emotions,

using four different EEG channel combinations, working on

the original signal without frequency separation and four

other frequency bands, and using three different methods

for computing the geometric mean. The best emotion clas-

sification accuracy for HVHA is 88.3%, LVHA is 84.38%,

LVLA is 79.3%, and HVLA is 78.4%. The average recogni-

tion accuracy for valence is 74.6%± 3.9, and 72.6%± 6.7
for arousal. In future work, we will focus on improving

the labeling approach to take into consideration the liking

and dominance scores and on trying different classification

rules.
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